Binomial edge ideals with pure resolutions
نویسندگان
چکیده
منابع مشابه
Binomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملBinomial Edge Ideals with Quadratic Gröbner Bases
We prove that a binomial edge ideal of a graph G has a quadratic Gröbner basis with respect to some term order if and only if the graph G is closed with respect to a given labelling of the vertices. We also state some criteria for the closedness of a graph G that do not depend on the labelling of its vertex set.
متن کاملBinomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملLINEAR RESOLUTIONS of POWERS of EDGE IDEALS
We discuss the linearity of the minimal free resolution of a power of an edge ideal.
متن کاملbinomial edge ideals and rational normal scrolls
let $x=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n x_2& ldots & x_n & x_{n+1} end{array}right)$ be the hankel matrix of size $2times n$ and let $g$ be a closed graph on the vertex set $[n].$ we study the binomial ideal $i_gsubset k[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $x$ which correspond to the edges of $g.$ we show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Collectanea Mathematica
سال: 2014
ISSN: 0010-0757,2038-4815
DOI: 10.1007/s13348-014-0107-x